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DECOUPLING IN LINEAR TIME-VARYING MULTIVARIABLE SYSTEMS

By Viswanathan Sankaran*

Langley Research Center

SUMMARY

This report deals with the problem of decoupling in linear multivariable systems

which has received much attention recently. The necessary and sufficient condition for

the decoupling of an m-input, m-output, linear time-varying dynamical system by state-

variable feedback is described. The class of feedback matrices which decouple the sys-

tem is characterized. Systems which do not satisfy these conditions are treated by par-

titioning the system. Finally, necessary and sufficient conditions for decoupling a system

which has both plant and observation noise are illustrated.

INTRODUCTION

Multivariable systems are defined as systems which have a multiplicity of inputs

and outputs. Most of the problems associated with modern technology including aircraft

and aerospace problems can be cast into such a framework.

Multivariable systems are characterized by coupling or interaction which usually

occurs between the variables of the system. Thus, in general, any given output is affected

by variation of any of the input variables of the system. Similarly, variation of each input

will affect all the output variables. Considerable effort has been directed recently toward

restructuring the system so that the new system is noninteracting or decoupled. Since

coupling is usually inherent in any plant, decoupling is a condition which is a part of the

design objective. Thus, from an input-output point of view the new system possesses non-

interaction, whereas from the point of view of original plant input and output, it is still

interacting.

Noninteracting multivariable systems can be conceived as consisting of a collection

of individual subsystems, each of which has a single input and a single output. Dealing

with single-input single-output subsystems has two advantages: (1) the problem of speci-

fying performance requirements is simplified, and (2) each subsystem can be treated

separately. With these advantages, the problem of designing to meet the needs is more

tractable, because of the many design technicues available for single input, single output

systems.

NRC-NASA Resident Research Associate.
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Earlier work in formulating design procedures in which decoupling is required

was reported by Voznesenskiy (ref. 1), Piven (ref. 2), Freeman (ref. 3), and Kavanagh

(refs. 4 and 5). Horowitz (ref. 6) has discussed a practical method of synthesizing con-
trollers to reduce the effect of plant parameter variations. Meerov (ref. 7) and
Mesarovic (ref. 8) studied the structure of multivariable systems. All these cOntribu-

tions use the transfer-function description of the dynamic systems.

Morgan (ref. 9) in 1964 approached the problem based on the state variable repre-

sentation. His main result was that the time invariant linear system

xk(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

can be decoupled if the matrix CB is nonsingular. Rekasius (ref. 10) extended Morgan's

result and outlined an essentially trial-and-error procedure for specifying a certain num-

ber of system poles while the system is being decoupled. Falb and Wolovich (refs. 11

and 12) in 1967 established the necessary and sufficient conditions for decoupling of

multivariable systems by state variable feedback. They also made definite contributions

to the synthesis problem. Gilbert (ref. 13) considered the complete structure of the solu-

tion of the system.

Porter (ref. 14), Viswanadham (ref. 15), Sankaran (ref. 16), and Majumdar and

Choudhury (ref. 17) extended Falb and Wolovich's result to the time-varying case.

Wonham and Morse (ref. 18) considered the problem in a geometric framework and they

also proposed dynamic compensators (ref. 19) to achieve a desired pole distribution for

the closed-loop-system transfer matrix. Extension of the problems with disturbances

and problems with discrete time systems are considered by Sankaran and Srinath

(refs. 16, 20 to 22). Decoupling using output feedback has been considered by Wang

(ref. 23), Howze (ref. 24), and Singh and Rugh (ref. 25). The results for a class of non-

linear systems have been reported by Nazar and Rekasius (ref. 26), Majumdar and

Choudhury (ref. 27), and Tokumaru and Iwai (ref. 28). Application of decoupling theory

to aircraft control problems can be seen in Cliff and Lutze (refs. 29 and 30) and in Yore

(ref. 31).

The purpose of this paper is to document the thesis work presented in reference 16
which relates the requirements for decoupling multivariable systems by state variable

feedback (refs. 11 and 12) to the time-varying case and includes a treatment of distur-

bances in the systems. The emphasis is to give reasonable in-depth treatment of the

modern problems facing the decoupling techniques and to present the results to date, but

certainly not all the existing techniques for decoupling multivariable systems. The
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results are based on Rozono6r's paper (ref. 32) on "A Variational Approach to the Prob-

lem of Invariance of Automatic Control Systems." However, this concept is extended to

the multivariable decoupling problem. This report is organized in the following manner:

First, the main results on the decoupling problem are presented. With the pre-

liminary statement of the problem, the necessary and sufficient conditions for decoupling

a linear dynamical system are given. The design approach for the feedback and feed-

forward matrices is discussed and illustrated with an example problem.

Secondly, systems which do not satisfy the given conditions for decoupling are

treated and necessary and sufficient conditions to partially decouple these systems are

given. An example is presented to clarify the results.

Finally, systems with stochastic disturbances are considered. A concept of decou-

pling is introduced and definitions and theorems applicable to such problems are

presented.

A bibliography of contemporary research works which concern decoupling is also

given. In order to improve usability, the bibliography is arranged alphabetically.

SYMBOLS

A(t) system matrix of dimension n x n

Ac(t) compensated system matrix of dimension n x n

B(t) input matrix of dimension n x m

BC(t) compensated input matrix of dimension n x m

Bj (t) jth column of matrix B(t)

C(t) output matrix of dimension m x n

Ci(t) ith row of matrix C(t)

D(t) decoupling matrix of dimension m x m

Di(t) ith row of matrix D(t)

d i  index parameter
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E{) expected value operation on ()

ei  unit column vector with one in the ith element and zero elsewhere

F(t) feedback matrix of dimension m X n

G(t) feedforward matrix of dimension m X m

H(t) matrix of dimension m X n

I identity matrix

indices
m,n,sJ

Ji(t) scalar function obtained as product Ci(t) x(t)

AJ(t) matrix with elements AJi (t)

AJi,j(t) increment in Ji(t) due to any variation Awj in w (T) (t o  7 t)

L(t) matrix of dimension m x n

m (t) arbitrary functions

pi(t) matrix of dimension n x m

Q(t) matrix operator I d - A - B F

dt BF

Qk(t) operation of Q, k times

Sk,i(t) ith row of matrix Sk(t) of dimension m X n

Sk,i(t) ith row of matrix Skc(t) of dimension mx n

t,t*, T variable times

to initial time
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t i  final time

u(t) m-vector representing the system input

v(t) m-vector representing observation noise

w(t) n-vector representing plant noise

x(t) n-vector representing the state of the system

^(t) minimum variance unbiased estimate of x(t)

x(t) error in estimating x as x

y(t) m-vector representing the system output

Zij(t) scalar function obtained as product qiT(t) B c(t)

z(t) observation vector of order m

al(t) . . . Cni(t) elements of pi(t) matrix

6( ) Dirac delta function

A(t) arbitrary diagonal matrix of dimension m x m

l(t) . . . m(t) elements of A(t) matrix

1(t) scalar function which does not vanish simultaneously for any t

P(t) adjoint system

w(t) m-vector representing reference input

A superscript T denotes the transpose of the quantity. A bar over a symbol used
in partial decoupling represents partitioning of the quantity corresponding to the rank p
of D(t). A tilda over a symbol in partial decoupling represents partitioning of the quan-
tity corresponding to (m - p) terms. Dots over symbols denote derivatives with respect
to time. The symbol V denotes "for all values."
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PROBLEM STATEMENT AND RESULTS IN DECOUPLING

BY STATE VARIABLE FEEDBACK

Consider the continuous time linear dynamical system

:(t) = A(t) x(t) + B(t) u(t) (1)

y(t) = C(t) x(t) (2)

where x(t) is a real n-vector representing the state of the system, and y(t) and u(t)
are real m-vectors representing system output and input, respectively. The matrices
A(t), B(t), and C(t) are n x n, n x m, and m n matrices, respectively. Let F(t)

and G(t) be m x n feedback and m x m feedforward matrices for all t E t0,tl].

A compensated system suitable for decoupling investigations using these feedback
and feedforward matrices may be constructed by defining

u(t) = F(t) x(t) + G(t) w(t) (3)

The m-component w vector is an external reference input to be used in controlling the
m-component, y-output vector. (See fig. 1.) Different degrees of decoupling between the
input and the output are defined later.

G E u B x X f F 7 10 y

Figure 1.- Block diagram for decoupled system.

By using the state variable feedback, the compensated system can be written as

i(t) = Ac(t) x(t) + Bc(t) w(t) (4)

y(t) = C(t) x(t) (5)
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where

AC(t) = A(t) + B(t) F(t) (6)

BC(t) = B(t) G(t) (7)

It is assumed that the elements of AC(t), BC(t), and C(t) together with their first

(n - 2), (n - 1), and (n - 2) derivatives, respectively, are continuous functions.

Problem Statement

Consider the function

Ji(t) = Ci(t) x(t) (i = 1, 2,. . .,m) (8)

where Ci(t) is the ith row of C(t). It follows that

Ji(t) = Yi(t) (9)

Let AJi,j(t) be the increment in Ji(t) due to any variation Awj in wj(7)

(t 0 5 7 t). Also let AJ represent a matrix with elements AJij.

Definition 1: The system given by equations (4) and (5) is said to be uniformly

decoupled for all t E [t0,t] if (1) the variation in Yi(t) due to any variation in wj(T)

(t0 : r t) whenever i * j is identically zero V t e [t0,t], and (2) the variation in

Yi(t) due to any variation in wi() ( 0 5 t) is not zero V t E [t0,t]. From this

definition, it follows that

AJi,j(t) =0 V t Ito 1; i * j (10)

AJi,i(t) 0 (V t E [tOt 1; i,j = 1, 2,. ., m) (11)

for uniformly decoupled systems.
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Main Results for Decoupling by State Variable Feedback

Theorem 1: For Jij (t) to be identically zero on [t0,tl11
i,j = 1, 2, . .. , m; i * j, it is necessary and sufficient that

Ci(t) Qk(t) Bjc(t) = 0 ij= 1, 2, m; (12)

k = 0,1,..., n-1

where the matrix operator Q is given by

Q= Id Ac (13)dt

Qk denotes the operation of Q k times and B.c(t) is the jth col-
umn of Bc(t) (ref. 32).

Proof: The quantity AJij(t), the variation in Ji (i = 1, 2, . .. , m) due to a vari-

ation in wj(7) (tO  _ 7 _ t; i * j) may be shown to be given by

tJi((t) = - T 7) BjC(T) AWj(T) dT (14)

where i(T) satisfies the adjoint equations

d Pi(T) = -Ac(T) i(T )  (15)

and

-i
(t ) = -Ci (t) (i= 1, 2,. . ., m) (16)

where the superscript T denotes the transpose of the quantity.
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Necessity: From equation (14), it is stated that equation (10) is satisfied if and

only if

Z.j (r) i (7) B C(r) =0 7 tt (17)

If equation (17) is fulfilled, then the fulfillment of equation (10) is clear by virtue of

equation (14). The converse is true, namely, equation (10) implies equation (17). To

prove this statement, assume that equation (17) is not fulfilled at some single point

T E [t 0 tl, for example suppose that OiT() Bj (r) > 0. Then the continuity of the func-

tion Zij (7) implies the existence of an entire segment including the point 7 on which

OiT () BjC(7) > 0. Now by choosing the increment Awj(7) equal to zero outside this

segment and equal, for example, to unity inside it, it can be seen that by virtue of equa-

tion (14), AJij(t) < 0, that is, equation (10) is not satisfied which is a contradiction. In a

similar argument, it can be shown that equation (10) is not satisfied for OiT() B jC(7) < 0.

Thus the statement has been proved.

Differentiating equation (17) and making use of equation (15) and the definition for

Q result in

1, = PirT) Q k(r) B c(7) = 0 (18)

dTk k = 0, 1, . . .,n-1

Substitution of equation (16) into equation (18) yields

dkZ1 ( i)Fk + j2ij = -Ci(t) k(7) B c(7 = 0 (19)
d 7k T=t tk = 0, 1,. . ., n-1

Since t is arbitrary, equation (12) follows and hence the necessity is proved.

Sufficiency: From equation (12), because Ci(t) is not identically zero, it follows

that the vectors B c(t), QBjC(t), . .. , Qn-lB c(t) are linearly dependent; that is, there

exist functions A0 (t), 4 1 (t), . . , n_l(t) which do not vanish simultaneously for any

t for which

n-1

I is(t) QsB (t) = 0 (20)

s=0
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From equations (18) and (20) it follows that the function Z i,(t) satisfies the differential

equation

n-i

s(t) - Zi,j(t) = 0
s=0 dtS

with the boundary condition given by equation (19). The unique function which satisfies

this relation is

Z .(t) = Pi (t) B c(t) = 0 
(V t E tt 1 )

and hence the sufficiency follows.

To apply the results of theorem 1 to the synthesis problem, it is convenient to

express equation (12) in terms of the row vectors S ,i(t) (k = 0, 1, . ., n - 1;

i = 1, 2, . . ., m) defined by

Soi(t) = Ci(t)

d _ I (21)

Sk+1,i(t) S(t)+ ,i(t) AC

Lemma 1: Theorem 1 holds if equation (12) in the statement of the

theorem is replaced by

V ttO1 
; i j

Si(t) BC (t) =0 i,j = 1, 2, .. , m; (22)
k = 0, 1, . . ., n-1

Proof: From equation (21),

Ci(t) Qk(t) Bc(t)= (-1)m dk-m c (t) B.c(t) (23)

m=0 dt

From the results of the theorem 1 and equation (23), the lemma is proved.
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To obtain the inequality condition of equation (11), the concepts of uniform output

controllability or uniform input observability are used. By use of the dual relation pre-

sented by Silverman and Meadows (ref. 33), the following comments can be made:

Comment 1: The ith subsystem is uniformly input observable on [t0,t 1 if and only

if the rank of the vector

[ ,i(t) Bi(t) S i (t) Bi c (t) . . . Snli(t) Bic(t) (24)

is one for all t E [t0,t 1 .

From the definition of uniform decoupling, if the system given by equations (4)

and (5) satisfies simultaneously equation (22) and comment 1, then it is uniformly

decoupled.

From the preceding discussion and theorem 1, it follows that if the n x m matrix

c ,i(t) BC(t)

S ,i(t) BC(t)

pi(t)= (i= 1, 2,. . .,m) (25)

Snc i(t) BC(t)

has all the columns identically zero except the ith column, that is, it has at least one non-

zero element

ai (t)

a2i1 (t)

pi(t) = O(i= 1, 2,. . .,m) (26)

nthen it is uniformly decoup(t)

then it is uniformly decoupled.
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Comment 2: The system is uniformly decoupled for all t E [t0,tl], if and only if

for all i = 1, 2, . . ., m, pi(t) is of the form of equation (26) so that the rank of its ith

column is 1 for all t E [tO,t ].

Feedback and Feedforward Matrices

In order to obtain the requisite F(t) and G(t) consider the indices di defined

as

di A Min : Sj,i(t) B(t) * 0; V t E t,t1 ; j = 1, 2, . . ., n-1) (27)

where the row vectors Sj,i(t) (j = 0, 1, . . .,n- 1; i = 1, 2, . . ., m) are defined by

S0 ,i(t) = Ci(t)

(28)
Sj+,i(t) = Sji(t) + Sj,i(t) A(t) 

(28)
dAtt)dt ],1 + j,

The di values are, in general, time dependent. But if Sj,i(t) B(t) : 0 for some

j and some t = t*, then the continuity and differentiability assumptions on A(t), B(t),
and C(t) imply that Sj,i(t) B(t) * 0 on some subinterval including the point t*. Hence,
when di values exist, they are constants over some subinterval of [t ,t 1]. In the mate-

rial that follows, it is assumed that the di values are constants over [to,ti].

Lemma 2: Sc,i(t) = Ski(t) for k - di and for all t E It0,tl].

Proof: From equation (21) and the definition of S0 ,i(t)

Si(t) = Ci(t) = SO,i(t) (29)

the proof can be completed by induction. Assume for some p < di

Sdi (t) = Sdii(t) t E [t0t (30)

12



Then for di - p + 1 by equation (21),

Sc , - , C-P (t) + Si-P,i(t) Ac(t) (31)

From equations (30) and (6),

Sc ,(t) =[ dPi(t) + Sd _P,i(t) A(t) + Sdi-pi (t) B(t) F(t) (32)

diP+li(t) = Sdi-p+l,i(t) + S diP,i(t) B(t) F(t) (33)

In view of equation (27) and the fact that d i - p < di,

S= Sd (t) (34)
di-p+l,i(t)= Sdi-p+l,i(t) (34)

Thus, by induction it follows that

Si(t) = Ski(t) (Y t E [t0]; k - di) (35)

Hence the lemma is proved.

Let

Di(t) = Sdi,i(t) B(t) (i = 1, 2, . ., m) (36)

and let D(t) be the matrix whose ith row is given by equation (36); that is,

Sdl,l(t) B(t)

Sd 2 ,2(t) B(t)

D(t) = (37)

Sdm,m(t) 
B(t)
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Let A(t) be an arbitrary diagonal matrix, nonsingular for all t E [t0 t1 , namely,

X 1 (t)

X2 (t)

X3 (t)

A(t) = (38)

Am(t)

and let

Sdl+1,1(t)

Sd 2 +1,2(t)

H(t)= (39)

Sdm+l,m(t)

Theorem 2: The system given by equations (4) and (5) is uniformly

decoupled if and only if D(t) is nonsingular for all t E It 0 ,t]: Then

the class of decoupling feedback matrices is given by

F(t) = -D-(t) H(t) (40)

G(t) = D- 1 (t) A(t) (41)

Proof:

Sufficiency: In view of equations (27) and (35), equation (25) can be written as

14



0

0

P (t) = S ii(t) B (t) G(t) (i = 1, 2,. . .,m) (42)

S _l,i(t) B(t) G(t)

Now

,c i(t) B(t) G(t) = Sdi,i(t) B(t) G(t) = Di(t) D-(t) A(t) eiT A(t) t tE[t0,1) (43)
dili ) 

It Si=)

S i (t) B(t) G(t) = XieiT t E t )  (44)
di,) 1 L

where eiT is a unit row vector with one in the ith place and zero elsewhere. From

equations (36) and (40)

Sdi+,i() = Sdi+,i(t ) + Sdi,i(t) B(t) F(t) = Sdi+l,i(t) - Di(t) D-(t) H(t) = 0

(V t EtOlt1; =1,2,.. .m) (45)

From equations (45) and (21), it follows that

Sdi+ki(t) =( 0 (V tEtt1]; kI 1)
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Hence,

0

P(t) =0 0 Xi(t) 0 ... 0 (46)

0

Since Xi(t) * 0 for all tE [tOtl], pi(t) has the form of equation (26) with the rank of

its ith column 1 for all t. Hence by comment 2 the system is uniformly decoupled.

Necessity: Suppose the system is uniformly decoupled, then by comment 2, Pi(t)

is of the form of equation (26), so that for each t E [tO,tl], at least one member of its

ith column is nonzero. From equations (27) and (41), it follows that Di(t) G(t) = hi(t) eiT

where Xi(t) * 0 for all t E [t0,t (i = 1, . ., m).

Thus,

D(t) G(t) = diag (t),X2(t),. . .,Xm(t) A (47)

The matrix G(t) is desired to be nonsingular for all t E [t0o,t1 in order that all

the inputs influence all the outputs. Hence it follows from equation (47) that D(t) is non-
singular and hence the theorem.

The matrix F(t) obtained in equation (40) is a class of matrix to insure that Pi(t)

has rank one for i = 1, 2, . .. , m and for all t [to,ti]. As is evident, there is no

choice in determining F(t). However, by assigning arbitrary coefficients, a particular
form of F(t) still insuring that the rank of Pi(t) is one is given by the following
comment:

16



Comment 3: The rank of Pi(t) is one for all t E [t,tt 1  (i = 1, . ., m) if

F(t) = -D- 1 (t) L(t), where

d
1

Sdl+1,1(t) + mj l (t) Sj, 1 (t)
j=0

L(t) ~ (48)

dm

Sdm+l,m(t) + I mj m (t) Sj,m(t

j=0

where the mji(t) coefficients are arbitrary coefficients available to the analyst to insure

that the compensated system is stable.

As is evident H(t) of equation (39) is a particular case of equation (48).

An Example Problem

Consider the system given by equations (1) and (2) where

1 4 + cost -1

A(t) = + cos t sin t 0 (49)

-1 0 2

e-t 0 1

B(t) =1 0 0 (50)

0 4 + cos t

17



and

4 + cos t 0 0

0 4 + cos t 1

Then from equation (37)

S0 ,1(t) B(t)

D(t) = S0 ,2(t) B(t)

SO,3(t) B(t)

(4 + cos t)e -t  0 4 + cost

D(t) = 0 4 + cos t 1 (52)

4 + cos t 4+ cos t 1

Now

0 -1 1

D-(t) 1 -1 1- -t e-t (53)
4 + cost 4 + cost 4 + cos t 4 + cos t

1 e-t -e-t

Because D is nonsingular, the system can be decoupled and the corresponding feedback
and feedforward matrices are given by equations (40) and (41); that is,

f 1 1  f12 f13

F(t) f -I4 + cos t 21 22 23 (54)

f3 1  f32 f3 3

18



and

0 -X2  3

G(t) 1 -1 2e-t 3e-t

4 + cos t4 + cost 2 4 + cost 4 + cos (55)

1 2e -t  -x3e-t

where

fll = (4 + cos t)2

fl2= (4 + cos t)(sin t + m0 3) - sin t

3 2

f21 = -  + e - t + m O  4 cos t 1 +( cos t)

-t (m 0 1 + 2 sin t)c 3

22 = -e 4 + cos t) + sin t + m0

2 -t 3 -t

f 2 3 
= -1 + m + 3 et

4 + cost 4 + cost

f31 = -sin t + (4 + cos t)( + e-t + m0
1 + (4 + cos t)e - t)

f32= e-tmo1 + 2 sin t -(4 + cos t)(sin t + m03 + (4 + cos t) 2

f33 = -(4 + cos t) + e-t(-4 + m0- m03)

19



and the m and Xj terms are arbitrary and may be used to insure stability of the

compensated system. The compensated matrices can be obtained by using equations (6)

and (7) and these relations; that is,

0 0
4 + cos t

BC(t) = 0 2 3 (56)
4 + cos t 4 + cos t

0 X2 0

and

Ac(t) = A(t) + B(t) F(t)

Time-Invariant System

The preceding results are available for time-invariant systems (ref. 12). The nec-

essary and sufficient condition for decoupling by state variable feedback is that the

matrix D whose ith row is given by

Di = CiA diB (57)

be nonsingular, where

di = Minj: CiA B 0; j = 0, 1, . .., n-1) = n - 1

(CiAB = 0 for all j) (58)

The decoupling feedback and feedforward matrices F and G are given by

F = -D-1A*  (59)

and

G = D - 1  (60)
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where

dl+1
clA

d2 +1

c2A

A* = (61)

cmAdm+1

PARTIAL DECOUPLING BY STATE VARIABLE FEEDBACK

In the previous sections it was shown that for decoupling by state variable feedback,
it is necessary and sufficient that the decoupling matrix D(t) is nonsingular. When such

is not the case, it is desirable to decouple at least part of the output from part of the ref-

erence input.

Problem Statement

Consider for the system given by equations (1) and (2). Let the rank of

D(t) = p < m. Partition the output vector as

y

where is a p-vector corresponding to the rank of D(t) and y, a m - p vector.

Similarly, partition the input vector as

where i is a p-vector and a, a m - p vector.
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Then equations (1) and (2) can be written as follows:

i(t)= A(t) x(t) + [B(t):B3(t) ---- (62)

.... I---- x(t) (63)

where B, B, C, and C are matrices of compatible order. Let the reference input

vector be W corresponding to the p inputs ii. Let F(t) and U(t) be p x n and

p x p matrices for all t E [tO,t]. Then let the input fi to the system using state vari-

able feedback be (fig. 2)

i(t) = F(t) x(t) + G(t) w(t) (64)

B A{D

Figure 2.- Block diagram for partially decoupled system.

Consider the function

Ji(t) = Ci(t) x(t) (i = 1, 2,. . .,p) (65)

Ji(t) = Ci(t) x(t) (i = 1, 2,. . ., m-p) (66)

where Ei(t) is the ith row of C(t) and (i(t) is the ith row of (t). From equa-

tion (52) it follows that Ji(t) = ii(t) and i(t) =i(t).
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Let AJi,j(t) be the increment in Ji(t) due to any variation A-wj in wj(7)

(t0 7 t) and A.j(t) be the increment in J(t) due to any variation A0 in w.(7)

(t0  7 t). Also let &J and AJ represent matrices with elements Aij and ij'
respectively.

Definition 2: The system given by equations (62) and (63) is said to be uniformly

partially decoupled for all t E [t0,tl] if (1) the variation in ji(t) due to any variation

in 7j(7) (t 0 = 7 - t; j * i) is identically zero V t E [t0 ,tl], (2) the variation in Yi(t)

due to any variation in Zi(T) (t 0o 5 t) is not zero V t E to,t] ,and (3) f I(t) is

minimized.

From this definition, it follows that

AJi, (t)= 0 i j; V tE tot1) (67)

A, 1 .(t) 0 ftE Ito,tl; i,j = 1, 2,. . ., p (68)

and

AJ(t) = Sup mA Jj(t) (69)

t C tt,t 1'i=1 j=1

is minimized.

Theorem 3: For the system given by equations (67) and (68) to be uni-

formly partially decoupled in the sense of the preceding definitions,

(1) It is necessary and sufficient that

.V tC Itotl ; i * j;

titt) (-(t) Bj(t) = 0 Lj = 1, 2, . . .,p; k (7)

\k= 0.1, . . ., n-1 )
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where Q is the matrix operator A - and

(2) To minimize the cross-coupling effect, it is sufficient that

m-p p

Sup I I t) () (t) (k = 0, 1,. . .,n-1) (71)

to 0 1 ti=1 j=1

is minimized.

Proof: The proof follows along the lines of theorem 1 and can be found in refer-

ence 16.

Comment 4: Equivalently, for the system to be uniformly partially decoupled,
(1) it is necessary and sufficient that D(t) whose ith row

Di(t) = Sdii(t) B(t) (i = 1, 2, . .,p) (72)

is nonsingular Vt E [,t 1]) and (2) to minimize te cross-coupling effect it is sufficient

that

.D(t) = Sdi(t) B(t)I (i = p + 1, . . ., m) (73)

is minimum where the norm is selected as given by equation (69).

In order to relate these results to the D(t) of the original system (1) and (2), par-
tition D(t) as follows:

D(t) D(t)
D(t) = ---------- (74)

D(t) i D(t)

where D(t) is a p x p matrix of rank p V tE ,t1]) , (t) is m-p m - p

matrix, D(t) is m - p x p matrix, and D(t) is p x m - p matrix. The matrix D(t)
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is invertible and hence the design procedure for F(t) and G(t) is identical to ordinary

decoupling.

It may be noted that the rows of D(t) correspond to the output y(t) and the col-

umns of D(t) correspond to the input u(t). This fact gives us an idea of what outputs

and inputs to choose for decoupling purposes.

Comment 5: The classes of decoupling matrices of equation (64) are given by

F(t) = -D-1 (t) L(t) (75)

G(t) =D 1(t) A(t) (76)

where

d
1

Sdl+l,l(t) + I j l (t ) Sjl(t)
j=O

L(t) - (77)

dp
Sd +l,p(t) + jP (t) S(t)

p j=0

where ii. terms are arbitrary coefficients and X(t) is a diagonal matrix with arbi-

trary coefficients and is nonsingular (V t E [tOt1).

An Example Problem

As an example, consider the system given by

1 4 + cost -1]

A(t) = 4 + cos t sin t 0 (78)

L-1 0 2J
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B(t) =0 0 0 (79)

0 4+ cost 179)

-t4 + cos t et

C(t) = 0 0 1 (80)

0 4 + cos t 1

Then

(4 + cos t)e-t 0 4 + cost

D(t) = 0 4 + cos t 1 (81)

0 4 + cost 1

and D(t) is singular for all t E [0,-). Hence the system cannot be decoupled. How-

ever, for t E C0,O), the rank of D(t) is two and so two of the outputs can be decoupled

from the reference inputs and the cross-coupling effects minimized by using these results.

Without loss of generality, consider the outputs to be decoupled to be yl and y2
Then,

4 + cost e-t 0
(t) = (82)

0 0 1

and

C(t)= [0 4 + cost 1]

In order to minimize D in the sense of equation (69), that is, the cross coupling between

the output y 3 and the reference inputs lw and w2 , assign the inputs ul and u 3 to
W1 and w2 ; that is,
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D(t) = 0 1 (83)

Hence

4 + cos t)e- t  4 + cost
D(t) =(84)

0 1

5(t) = 0 (85)

and

B(t) = o (86)

4 + cost

From this discussion

i(t) = F(t) x(t) + G(t) w(t) (87)

where

fi(t) = (88)

u3(t)

f11 f12 f13

F(t) = - 1 (89)
4+ cost

2 1 222
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-t e-t
(t) (4 + cos t)e e(90)

0 i2 (t)

where

= (4 + cos t)[2 + et + 01(t)] - sin et

i12= m01 (t) + sin t - 1 + et(4 + cos t) 2

'13 =-et(4 + cos t)[3 + 02(t)] (91)
(91)

21 = -(4 + cos t)

22 = 0

23 = [2 + EO2(t)(4 + cos t)

and the m i and Xj terms are arbitrary and may be used to insure stability of the par-

tially compensated system. The corresponding compensated system matrices are given
by

ac aC2 0

AC(t) = a2 1  a22 0 (92)

0 0 a3 3
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where

c 1 + e sin t

4 + cos t

-(01 + sin t- 1)et

4 + cost

a21 = 4 + cos t
c

a 2 2 = sin t

c -2
a2 3 =

and

1(t)

4 + cos t

BC(t)= 0 0 (93)

0 x2 (t)

STOCHASTIC DECOUPLING BY STATE ESTIMATOR VARIABLE FEEDBACK

In the previous sections decoupling of linear multivariable system by state feedback

and a transformation of the input is considered. Even though output feedback can be used

for decoupling, some of the flexibility obtained with state variable feedback as in specify-

ing closed loop poles, and so forth, will, in general, be lost. If the states are not directly

accessible, a possible approach is to construct an observer to reconstruct the inaccessible

states to generate the control law. In this section stochastic decoupling in linear multi-

variable system with known plant and observation noise is considered. A definition of

decoupling applicable to this and a procedure for achieving such decoupling are presented.

Consider the linear plant and observation model

k(t) = A(t) x(t) + B(t) u(t) + w(t) (94)
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y(t) = C(t) x(t) (95)

z(t) = y(t) + v(t) (96)

where x(t) is a real n-vector representing the state of the plant, y(t), u(t), and z(t)
are real m-vectors representing the plant output and input and observation, respectively.
A(t), B(t), and C(t) are matrices of compatible dimensions. The vectors w(t) and v(t)
are plant and observation noise vectors that are assumed to be zero mean and Gaussian
with

Cov(w(t),w(7))= Q(t) 6(t - 7)

Cov(v(t),v(7)) = R(t) 6(t - ) (97)

Cov(w(t),v(T)) = S(t) (t - 7)

and x(t0 ) is a Gaussian random variable with known mean and covariance which is inde-
pendent of w(t) and v(t) for all t - to . Let i(t) be the minimum variance estimate
of x(t), and let the control law be given by

u(t) = F(t) :i(t) + G(t) w(t) (98)

where the m-vector w(t) is the reference input and F(t) and G(t) are matrices of
compatible dimensions.

Consider the random functions,

Ji(t) =Ci(t) X(t) (i= 1, 2, . . .,m) (99)

where Ci is the ith row of C(t). Let AJi,j(t) be the increment in Ji(t) due to any
variation Awj in wj(7) (t o - 5 t) and let AJ represent the matrix with elements

AJi,j"
Definition 3: The system given by equations (94) to (96) is said to be stochastically

decoupled, if (1) the expected variation in Yi(t) due to any variation in wj(T) (t O  t)

if i * j is zero; and (2) the expected variation in Yi(t) due to any variation in wi(r)
(to 75 t) is not zero.

Mathematically,

E(AJij(t = 0 (i # j) (100)
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and

E(AJi,i(t) * 0 ij = 1, 2, .,m; V t E It0,tl) (101)

Theorem 4: For the stochastic control problem to satisfy the equality

relation of equation (88), it is necessary and sufficient that

i j; i,j= 1,2,. . .,m;
Ci(t) Qk(t) Bj(t) = 0 k 0, 1, . .. , n-1; (102)

VtE [t0,tl]

where Q is the matrix operator (I A- BF) and Bj(t) is the jth

column of B(t).

Proof: Because

: = x -R (103)

where R is the error in estimating x as k, then

k(t) = (A + BF)x + BGw + w - BF9 (104)

If ic represents an unbiased estimate,

E ((t)) = 0

The rest of the proof follows along the lines of theorem 1.

Comment 6: For the stochastic control problem to be decoupled, it is necessary

and sufficient that D(t) whose ith row

Di(t)=Sd t) (i = 1, 2,. .,m) (105)

is nonsingular (Vt t[,tlt).-
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The classes of feedback and feedforward matrices are the same as for ordinary

decoupling. Also the results can be extended in a straightforward manner to the case

when the D matrix is singular to obtain a partially decoupled system.

CONCLUDING REMARKS

The necessary and sufficient conditions for decoupling, time-varying, continuous-

time, linear-multivariable systems have been presented in this paper. A constructive

method for determining the required feedback and feedforward matrices was described

and illustrated in an example problem.

For systems which do not satisfy the necessary and sufficient conditions, a method

for accomplishing partial decoupling was presented and illustrated through an example

problem. Finally, a definition of decoupling applicable to linear systems with known plant

and observation noise and a procedure for decoupling such systems were given.

Although the procedures discussed in this report apply to linear continuous-time

systems, it is obvious that with minor modification they would apply equally well to

discrete-time systems.

In spite of the generality of the present theory, there remain a number of important

problems for future investigation. Probably the most challenging of these is to extend the

present theory to a broader class of systems. Although efforts have been made to develop

a decoupling theory for nonlinear systems and distributed systems, the considerable dif-

ficulties of these generalizations of the problem so far have inhibited substantial progress.

Another important endeavor would be to develop meaningful questions regarding the

sensitivity of decoupled systems. Efforts in this direction were made by the author and

presented in the Proceedings IEEE Trans., Feb. 1973 (pp. 241-242). In fact, it is clear

that in practice no physical system can be decoupled exactly. Obviously, what is needed

is a useful and precise definition for an "approximately" decoupled system. Quantitative

considerations such as this one are of considerable practical importance and almost

nothing is known about them.

Langley Research Center,

National Aeronautics and Space Administration,

Hampton, Va., October 12, 1973.
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